撰文 艾米莉·哈里森( Emily Harrison)
翻译 杜珍辉
显微技术的发展,让科学家可以更容易深入微观世界。但在普通显微镜下,细胞的模样千篇一律,很难区分。为此,科学家发明了多种方法:利用基因工程技术改造细胞,用染料给细胞染色……最终,呈现在显微镜视野里的,不再是单调的细胞,而是五彩斑斓的美丽景象。
不论我们喜不喜欢眼前的物体,眼睛永远用同一种方式采集信息:视网膜上的细胞捕捉光子,将其中的信息传递给大脑,再由大脑还原为画面。如果物体太小,反射的光子过少,肉眼就无法看清它的结构。这时,我们需要借助显微技术进行观察。本文展示的图片,均是2007年奥林巴斯生物数字成像大赛(Olympus BioScapes Digital Imaging Competition)的获奖作品,不仅具有重要的学术价值,更有强烈的艺术美感。这些图片代表了生物研究中最先进的光学显微技术。
目前,光学显微技术正在经历一场前所未有的变革。科学家使用新型荧光标记物和最新基因工程技术对组织样本进行改造,让显微镜中的组织样本变得五彩斑斓,打开了通往“发现”的大门。荣获2007年奥林巴斯生物数字成像大赛一等奖的图片,是研究人员采用一种全新技术——“脑虹”技术拍摄的。通过这种技术,小鼠脑部的各个神经元呈现出各种色彩,清晰可辨,让我们可以在错综复杂的神经网络中跟踪分析特定轴突,也可以绘制完整的神经网络图谱——对于老式成像技术来说,这是不可能完成的任务。
显微镜的精度也在提高。我们可以在某个特殊蛋白质上做标记,然后利用显微镜跟踪观察它在组织里的活动路线;细胞分裂、分化过程中的每个细节,同样可以一览无余。研究人员能在强光下快速抓拍,捕捉细胞或组织内的瞬时事件,也能在弱光下观察细胞内的精细生命过程。随着显微技术的创新发展,图像采集速度与分辨率之间的矛盾将逐步得到解决。
目前,一些显微技术甚至能观察最细微的生物结构(同时处理大量观察数据),这些技术的广泛应用,为我们了解生命的本质奠定了坚实的基础。
复杂的大脑:美国加利福尼亚大学圣迭戈分校的托马斯·迪林克(Thomas Deerinck)利用双光子显微技术(2-photon microscopy),拍摄到了一块仅有400μm厚的小鼠小脑组织样本的精细显微结构(见上图),其中绿色的是浦肯野神经细胞(Purkinje neuron),红色的是神经胶质细胞(glial cell),蓝色的则是神经核。美国哈佛大学的吉恩·里维特(Jean Livet)使用共焦显微技术(confocal microscopy),拍摄了一只基因工程小鼠的脑干组织切片(厚340μm)。由于经过基因改造,小鼠的每个神经细胞都呈现出不同的颜色(见下图)。给神经元赋予不同的颜色(即“脑虹”技术,Brainbow),科学家就能观察到单个轴突在复杂的脑神经网络中的走向。
因为所在空间狭小且不易分离,内耳结构极难观察。美国北卡罗来纳大学惠明顿分校的索尼娅·派奥特(Sonja Pyott)拍摄到了小鼠内耳毛细胞(上图最左边),这些细胞可将机械声波转换成电脉冲信号。图中,毛细胞为绿色,与毛细胞有突触联系的细胞为红色,蓝色的则是细胞核(共焦显微技术)。美国华盛顿大学的格伦·麦克唐纳德(Glen MacDonald)采用相似的染色方法,拍摄到一只小鼠内耳的组织结构图(共焦显微技术)。
相关报道:
本文导航: | ||
·揭秘显微镜下的美丽细胞(组图) ·揭秘显微镜下的美丽细胞(组图)(2) | ·揭秘显微镜下的美丽细胞(组图)(3) |